Installation Reference Guide

REFER TO OWNER'S MANUAL FOR SPECIFIC INSTALLATION REQUIREMENTS AND ADDITIONAL PRODUCT INSTRUCTIONS

Minimum
Framing Dimensions

Depth	$18^{1 / 4} 4^{\prime \prime}$	464 mm
Width	$41^{1 / 2} 2^{\prime \prime}$	$1,054 \mathrm{~mm}$
Header Height	$42^{\prime \prime}$	1,067 mm
Enclosure Ceiling (Log - NG)	72	1,829 mm
Enclosure Ceiling (Glass - NG)	$76^{1 / 2} 2^{\prime \prime}$	1,943 mm
Enclosure Ceiling (Log \& Glass - LP)	$80^{1 / 2} 2^{\prime \prime}$	2,045 mm

Note: When framing the unit, core must be taken to consider the final floor thickness, the bottom of the fireplace must sit flush with the finished floor to ensure proper fit of the surround components

* Minimum enclosure ceiling height is increased when fireplace has been converted to glass and propane (LP).
** The 4/6 Direct Vent pipe measurement 6.625" (168.275 mm) outside diameter with $1^{\prime \prime}$ clearance.

Clearance to Combustibles

A - Finishing edge to side wall	$7 "$
B - Minimum clearance to ceiling	$72^{\prime \prime}$
C - Minimum clearance to mantle height	See Chart
D - Front of door to edge of floor protection	$0^{\prime \prime}$

Non-Combustible Board Placement

Minimum Venting Requirements

This appliance uses a $4^{\prime \prime}$ (102 mm) exhaust / 6 5/8" (168 mm) air intake vent pipe system. For safe and proper operation of the appliance follow the venting instructions exactly. Deviation from the minimum vertical length can create difficulty in burner start-up and sooting. Allow several minutes for the flame to stabalize after ignition under extreme vent configurations. It is recommended for vent lengths that pass through unheated spaces (garages, attics, crawl spaces) be insulated to minimize condensation.

NOTE: Measure your total vent height on the unit before a hole is cut into the exterior wall; account for $1 / 4^{\prime \prime}(25 \mathrm{~mm})$ of rise for every $12^{\prime \prime}$ (305 mm) of run to determine your thimble height.

* Log - NG	$55.5^{\prime \prime}$	1410 mm
Glass - NG	$60^{\prime \prime}$	1524 mm
Log \& Glass - LP	$66^{\prime \prime}$	1677 mm

NOTE: Center of thimble dimension is base on $12^{\prime \prime}$ section of vertical rise for Natural Gas (NG) installs and $12^{\prime \prime}+12^{\prime \prime}$ sections for units converted to Propane (LP).

Fireplace Dimensions

Mantel Projections

Mantel graph dimensions are measured from the bottom of the fireplace, if you wish to reference the mantel height from the tiling edge subtract $34 \frac{1}{2}$ inches $(876 \mathrm{~mm}$) from the mantel height depicted on the graph. If you plan to install a TV above your fireplace refer to the appropriate section for available options. It is acceptable to install a combustible mantel over top of the non-combustible board. If you are activating the Cool Surface System you are eligible to subtract $6^{\prime \prime}(152 \mathrm{~mm})$ from the mantel height shown in this diagram.

Cool Surface System Framing

Framing Option 1:

Front Discharge (flush wall installations)

Construct the framing in a way that provides a minimum $41 \frac{1}{2}$ " inch (1054 mm) by $2^{\prime \prime}$ inch $(51 \mathrm{~mm})$ gap at the top of the facing wall. It is essential that these dimensions are respected and not to deviate away from them when using combustible materials inside the chase (see Figure 34).

Note: Ifyou wish to construct the CSS air discharge part way up a tall wall then it is essential to build a false ceiling inside the chase at the desired height to direct the rising heat out of the gap.

$*$	Log - NG	$72^{\prime \prime}$
Glass - NG	7649 mm	
Log \& Glass - LP	801943 mm	

Figure 34: Framing Option 1

Framing Option 2:

Open Chase (built-out installations)

This could be considered the most discreet option when considering the CSS. The chase must be constructed in a way that stops short of the ceiling, leaving it totally vented above. Minimum framing dimensions must be followed when constructing this option and not to deviated from them when using combustible materials. Consider Optional 3: Valance to work in conjunction with this option.

Figure 35: Option 2

Figure 36: Open Chase Iso View

Framing Option 3: Valance

A valance may be desired to accentuate or hide the CSS outlet. Consider framing option 1 or 2 to utilize the valance feature.
This is an optional decorative feature that covers up the CSS outlet gap. Minimum opening and valance dimensions must be followed to ensure safe heat dissipation. Combustible materiel is acceptable when constructing the valance. It is acceptable to wrap the valance around the three sides of a built out chase (Option 2).

Figure 37: Valance Install

Figure 38: Valance Iso View

Cool Surface System Framing

Framing Option 4: Bezel

The included bezel may be desired to accentuate the CSS outlet. This installation will also cover the edge of the finishing material at the cutout. Construct the framing in a way that provides a $41 \frac{1}{2}$ " inch $(1054 \mathrm{~mm})$ by $2^{\prime \prime}$ inch $(51 \mathrm{~mm})$ cutout to mount the bezel. The top of the cutout must be $1 \frac{1}{2}$ " from the top of the chase. It is essential that these dimensions are followed and not to deviated from them when using combustible materials inside the chase (see Figure 39).

Note: If you wish to construct a similar cutout part way up a tall wall then it is essential to build a false ceiling inside the chase at the desired height to direct the rising heat out of the gap.

Figure 39: Option 3 Bezel

Figure 40: Bezel Iso View

Optional: False Ceiling

If your ceiling dimension is greater than the minimum (See figure 34) You may want the CSS air discharge lower on the wall. This false ceiling is required to properly evacuate heat from the chase. (See Figure 41).

Figure 41: False Ceiling

Figure 42: False Ceiling Iso View

